\(\int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx\) [98]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [B] (verification not implemented)

Optimal result

Integrand size = 36, antiderivative size = 167 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(i A-B) \tan ^2(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {5 i A-11 B}{6 a d \sqrt {a+i a \tan (c+d x)}}+\frac {(i A-7 B) \sqrt {a+i a \tan (c+d x)}}{3 a^2 d} \]

[Out]

1/4*(I*A+B)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/a^(3/2)/d*2^(1/2)+1/6*(5*I*A-11*B)/a/d/(a+I*
a*tan(d*x+c))^(1/2)+1/3*(I*A-7*B)*(a+I*a*tan(d*x+c))^(1/2)/a^2/d+1/3*(I*A-B)*tan(d*x+c)^2/d/(a+I*a*tan(d*x+c))
^(3/2)

Rubi [A] (verified)

Time = 0.58 (sec) , antiderivative size = 167, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.139, Rules used = {3676, 3673, 3607, 3561, 212} \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\frac {(B+i A) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(-7 B+i A) \sqrt {a+i a \tan (c+d x)}}{3 a^2 d}+\frac {(-B+i A) \tan ^2(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {-11 B+5 i A}{6 a d \sqrt {a+i a \tan (c+d x)}} \]

[In]

Int[(Tan[c + d*x]^2*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

((I*A + B)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(2*Sqrt[2]*a^(3/2)*d) + ((I*A - B)*Tan[c + d
*x]^2)/(3*d*(a + I*a*Tan[c + d*x])^(3/2)) + ((5*I)*A - 11*B)/(6*a*d*Sqrt[a + I*a*Tan[c + d*x]]) + ((I*A - 7*B)
*Sqrt[a + I*a*Tan[c + d*x]])/(3*a^2*d)

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3561

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[-2*(b/d), Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 3607

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(-(
b*c - a*d))*((a + b*Tan[e + f*x])^m/(2*a*f*m)), x] + Dist[(b*c + a*d)/(2*a*b), Int[(a + b*Tan[e + f*x])^(m + 1
), x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0]

Rule 3673

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_.)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(
e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[B*d*((a + b*Tan[e + f*x])^(m + 1)/(b*f*(m + 1))), x] + Int[(a + b*Tan[e
 + f*x])^m*Simp[A*c - B*d + (B*c + A*d)*Tan[e + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b
*c - a*d, 0] &&  !LeQ[m, -1]

Rule 3676

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-(A*b - a*B))*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^n/(2*a*f
*m)), x] + Dist[1/(2*a^2*m), Int[(a + b*Tan[e + f*x])^(m + 1)*(c + d*Tan[e + f*x])^(n - 1)*Simp[A*(a*c*m + b*d
*n) - B*(b*c*m + a*d*n) - d*(b*B*(m - n) - a*A*(m + n))*Tan[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, e, f, A
, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[m, 0] && GtQ[n, 0]

Rubi steps \begin{align*} \text {integral}& = \frac {(i A-B) \tan ^2(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}-\frac {\int \frac {\tan (c+d x) \left (2 a (i A-B)+\frac {1}{2} a (A+7 i B) \tan (c+d x)\right )}{\sqrt {a+i a \tan (c+d x)}} \, dx}{3 a^2} \\ & = \frac {(i A-B) \tan ^2(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {(i A-7 B) \sqrt {a+i a \tan (c+d x)}}{3 a^2 d}-\frac {\int \frac {-\frac {1}{2} a (A+7 i B)+2 a (i A-B) \tan (c+d x)}{\sqrt {a+i a \tan (c+d x)}} \, dx}{3 a^2} \\ & = \frac {(i A-B) \tan ^2(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {5 i A-11 B}{6 a d \sqrt {a+i a \tan (c+d x)}}+\frac {(i A-7 B) \sqrt {a+i a \tan (c+d x)}}{3 a^2 d}-\frac {(A-i B) \int \sqrt {a+i a \tan (c+d x)} \, dx}{4 a^2} \\ & = \frac {(i A-B) \tan ^2(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {5 i A-11 B}{6 a d \sqrt {a+i a \tan (c+d x)}}+\frac {(i A-7 B) \sqrt {a+i a \tan (c+d x)}}{3 a^2 d}+\frac {(i A+B) \text {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{2 a d} \\ & = \frac {(i A+B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{2 \sqrt {2} a^{3/2} d}+\frac {(i A-B) \tan ^2(c+d x)}{3 d (a+i a \tan (c+d x))^{3/2}}+\frac {5 i A-11 B}{6 a d \sqrt {a+i a \tan (c+d x)}}+\frac {(i A-7 B) \sqrt {a+i a \tan (c+d x)}}{3 a^2 d} \\ \end{align*}

Mathematica [A] (verified)

Time = 1.72 (sec) , antiderivative size = 148, normalized size of antiderivative = 0.89 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\frac {2 B \tan ^2(c+d x)}{d (a+i a \tan (c+d x))^{3/2}}+\frac {i \left (\frac {3 \sqrt {2} (A-i B) \text {arctanh}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{\sqrt {a}}-\frac {4 a (A+7 i B)}{(a+i a \tan (c+d x))^{3/2}}+\frac {6 (3 A+13 i B)}{\sqrt {a+i a \tan (c+d x)}}\right )}{12 a d} \]

[In]

Integrate[(Tan[c + d*x]^2*(A + B*Tan[c + d*x]))/(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(2*B*Tan[c + d*x]^2)/(d*(a + I*a*Tan[c + d*x])^(3/2)) + ((I/12)*((3*Sqrt[2]*(A - I*B)*ArcTanh[Sqrt[a + I*a*Tan
[c + d*x]]/(Sqrt[2]*Sqrt[a])])/Sqrt[a] - (4*a*(A + (7*I)*B))/(a + I*a*Tan[c + d*x])^(3/2) + (6*(3*A + (13*I)*B
))/Sqrt[a + I*a*Tan[c + d*x]]))/(a*d)

Maple [A] (verified)

Time = 0.12 (sec) , antiderivative size = 116, normalized size of antiderivative = 0.69

method result size
derivativedivides \(\frac {2 i \left (i B \sqrt {a +i a \tan \left (d x +c \right )}+\frac {a \left (5 i B +3 A \right )}{4 \sqrt {a +i a \tan \left (d x +c \right )}}-\frac {a^{2} \left (i B +A \right )}{6 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}+\frac {\sqrt {a}\, \left (-i B +A \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{8}\right )}{d \,a^{2}}\) \(116\)
default \(\frac {2 i \left (i B \sqrt {a +i a \tan \left (d x +c \right )}+\frac {a \left (5 i B +3 A \right )}{4 \sqrt {a +i a \tan \left (d x +c \right )}}-\frac {a^{2} \left (i B +A \right )}{6 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}+\frac {\sqrt {a}\, \left (-i B +A \right ) \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{8}\right )}{d \,a^{2}}\) \(116\)
parts \(\frac {2 i A \left (\frac {\sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{8 \sqrt {a}}+\frac {3}{4 \sqrt {a +i a \tan \left (d x +c \right )}}-\frac {a}{6 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}\right )}{d a}+\frac {2 B \left (-\sqrt {a +i a \tan \left (d x +c \right )}+\frac {\sqrt {a}\, \sqrt {2}\, \operatorname {arctanh}\left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{8}-\frac {5 a}{4 \sqrt {a +i a \tan \left (d x +c \right )}}+\frac {a^{2}}{6 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}\right )}{d \,a^{2}}\) \(170\)

[In]

int(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2*I/d/a^2*(I*B*(a+I*a*tan(d*x+c))^(1/2)+1/4*a*(3*A+5*I*B)/(a+I*a*tan(d*x+c))^(1/2)-1/6*a^2*(A+I*B)/(a+I*a*tan(
d*x+c))^(3/2)+1/8*a^(1/2)*(A-I*B)*2^(1/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2)))

Fricas [B] (verification not implemented)

Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 375 vs. \(2 (128) = 256\).

Time = 0.25 (sec) , antiderivative size = 375, normalized size of antiderivative = 2.25 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {{\left (3 \, \sqrt {\frac {1}{2}} a^{2} d \sqrt {-\frac {A^{2} - 2 i \, A B - B^{2}}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (-\frac {4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {-\frac {A^{2} - 2 i \, A B - B^{2}}{a^{3} d^{2}}} + {\left (-i \, A - B\right )} a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) - 3 \, \sqrt {\frac {1}{2}} a^{2} d \sqrt {-\frac {A^{2} - 2 i \, A B - B^{2}}{a^{3} d^{2}}} e^{\left (3 i \, d x + 3 i \, c\right )} \log \left (\frac {4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{2} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {-\frac {A^{2} - 2 i \, A B - B^{2}}{a^{3} d^{2}}} - {\left (-i \, A - B\right )} a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{i \, A + B}\right ) + \sqrt {2} {\left (2 \, {\left (-4 i \, A + 19 \, B\right )} e^{\left (4 i \, d x + 4 i \, c\right )} - {\left (7 i \, A - 13 \, B\right )} e^{\left (2 i \, d x + 2 i \, c\right )} + i \, A - B\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-3 i \, d x - 3 i \, c\right )}}{12 \, a^{2} d} \]

[In]

integrate(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/12*(3*sqrt(1/2)*a^2*d*sqrt(-(A^2 - 2*I*A*B - B^2)/(a^3*d^2))*e^(3*I*d*x + 3*I*c)*log(-4*(sqrt(2)*sqrt(1/2)*
(a^2*d*e^(2*I*d*x + 2*I*c) + a^2*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(-(A^2 - 2*I*A*B - B^2)/(a^3*d^2)) +
 (-I*A - B)*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(I*A + B)) - 3*sqrt(1/2)*a^2*d*sqrt(-(A^2 - 2*I*A*B - B^2)/(a^
3*d^2))*e^(3*I*d*x + 3*I*c)*log(4*(sqrt(2)*sqrt(1/2)*(a^2*d*e^(2*I*d*x + 2*I*c) + a^2*d)*sqrt(a/(e^(2*I*d*x +
2*I*c) + 1))*sqrt(-(A^2 - 2*I*A*B - B^2)/(a^3*d^2)) - (-I*A - B)*a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/(I*A + B)
) + sqrt(2)*(2*(-4*I*A + 19*B)*e^(4*I*d*x + 4*I*c) - (7*I*A - 13*B)*e^(2*I*d*x + 2*I*c) + I*A - B)*sqrt(a/(e^(
2*I*d*x + 2*I*c) + 1)))*e^(-3*I*d*x - 3*I*c)/(a^2*d)

Sympy [F]

\[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int \frac {\left (A + B \tan {\left (c + d x \right )}\right ) \tan ^{2}{\left (c + d x \right )}}{\left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}}}\, dx \]

[In]

integrate(tan(d*x+c)**2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral((A + B*tan(c + d*x))*tan(c + d*x)**2/(I*a*(tan(c + d*x) - I))**(3/2), x)

Maxima [A] (verification not implemented)

none

Time = 0.32 (sec) , antiderivative size = 137, normalized size of antiderivative = 0.82 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {i \, {\left (3 \, \sqrt {2} {\left (A - i \, B\right )} a^{\frac {3}{2}} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) - 48 i \, \sqrt {i \, a \tan \left (d x + c\right ) + a} B a - \frac {4 \, {\left (3 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} {\left (3 \, A + 5 i \, B\right )} a^{2} - 2 \, {\left (A + i \, B\right )} a^{3}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}}\right )}}{24 \, a^{3} d} \]

[In]

integrate(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

-1/24*I*(3*sqrt(2)*(A - I*B)*a^(3/2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sq
rt(I*a*tan(d*x + c) + a))) - 48*I*sqrt(I*a*tan(d*x + c) + a)*B*a - 4*(3*(I*a*tan(d*x + c) + a)*(3*A + 5*I*B)*a
^2 - 2*(A + I*B)*a^3)/(I*a*tan(d*x + c) + a)^(3/2))/(a^3*d)

Giac [F]

\[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=\int { \frac {{\left (B \tan \left (d x + c\right ) + A\right )} \tan \left (d x + c\right )^{2}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate(tan(d*x+c)^2*(A+B*tan(d*x+c))/(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

integrate((B*tan(d*x + c) + A)*tan(d*x + c)^2/(I*a*tan(d*x + c) + a)^(3/2), x)

Mupad [B] (verification not implemented)

Time = 0.74 (sec) , antiderivative size = 186, normalized size of antiderivative = 1.11 \[ \int \frac {\tan ^2(c+d x) (A+B \tan (c+d x))}{(a+i a \tan (c+d x))^{3/2}} \, dx=-\frac {\frac {A\,1{}\mathrm {i}}{3\,d}-\frac {A\,\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )\,3{}\mathrm {i}}{2\,a\,d}}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}+\frac {\frac {B\,a}{3}-\frac {5\,B\,\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}{2}}{a\,d\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}-\frac {2\,B\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{a^2\,d}+\frac {\sqrt {2}\,A\,\mathrm {atan}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {-a}}\right )\,1{}\mathrm {i}}{4\,{\left (-a\right )}^{3/2}\,d}+\frac {\sqrt {2}\,B\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {a}}\right )}{4\,a^{3/2}\,d} \]

[In]

int((tan(c + d*x)^2*(A + B*tan(c + d*x)))/(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

((B*a)/3 - (5*B*(a + a*tan(c + d*x)*1i))/2)/(a*d*(a + a*tan(c + d*x)*1i)^(3/2)) - ((A*1i)/(3*d) - (A*(a + a*ta
n(c + d*x)*1i)*3i)/(2*a*d))/(a + a*tan(c + d*x)*1i)^(3/2) - (2*B*(a + a*tan(c + d*x)*1i)^(1/2))/(a^2*d) + (2^(
1/2)*A*atan((2^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*(-a)^(1/2)))*1i)/(4*(-a)^(3/2)*d) + (2^(1/2)*B*atanh((2
^(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*a^(1/2))))/(4*a^(3/2)*d)